10.2: Hyperbolas

- Geometric definition: The set of points whose difference in distances from two points (called foci) is constant.
- Using the geometric definition to find a formula

Note that in the picture the difference in distances between the vertex $(a, 0)$ and each of the foci is $2 a$ so the differences in the distances between any point on the hyperbola and each of the foci should be equal to $2 a$.

$$
\sqrt{(x-c)^{2}+y^{2}}-\sqrt{(x+c)^{2}+y^{2}}=2 a
$$

Manipulate the same way you would when solving equations with two radicals. Solving for x or y renders the same answer:

$$
\left.\left.\begin{array}{l}
\text { Isolate one radical: } \\
\begin{array}{l}
\Longrightarrow \\
\text { Raise to Power 2: }
\end{array}(x-c)^{2}+y^{2}=4 a^{2}+4 a \sqrt{(x-c)^{2}+y^{2}}=2 a+\sqrt{(x+c)^{2}+y^{2}} \\
\\
\text { Use binomial expansion and simplify: }
\end{array} \quad 0=4 a^{2}+4 a \sqrt{(x+c)^{2}+y^{2}}+4 x c+c\right)^{2}+y^{2}\right)
$$

factor 4 and isolate the radical: $-a \sqrt{(x+c)^{2}+y^{2}}=a^{2}+c x$
Raise to power 2 again: $a^{2}(x+c)^{2}+a^{2} y^{2}=a^{4}+2 a^{2} c x+c^{2} x^{2}$
$\underset{\text { Simplify: }}{\Longrightarrow} a^{2} x^{2}+a^{2} c^{2}+a^{2} y^{2}=a^{4}+c^{2} x^{2}$
Isolate the terms with variables: $\left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{4}-a^{2} c^{2}$
Denote $a^{2}-c^{2}$ by $-b^{2}: \quad-b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$
Divide by $-a^{2} b^{2}: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

- Graphs of hyperbolas where axes are vertical or horizontal

Horizontal hyperbola Standard Equation: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ $y=-\frac{b}{a}(x-h)+k \quad y=\frac{b}{a}(x-h)+k$

Horizontal hyperbola and center (h, k)
Standard Equation: $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

Vertical Hyperbola
Standard Equation: $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$

$$
y=-\frac{a}{b}(x \uparrow-h)+k \quad y=\frac{a}{b}(x-h)+k
$$

Vertical Hyperbola and center (h, k)
Standard Equation: $\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$

- How to find different parameters for a hyperbola using its equation:

1. If the equation is anything other than the above equations, reformat to one of the above.
2. In standard form if x term is positive, then the hyperbola is horizontal. Otherwise, the hyperbola is vertical.
3. If hyperbola is horizontal, to find the vertices, plug in $y=0$ or $y=k$ and solve. If hyperbola is vertical, to find the vertices, plug in $x=0$ or $x=h$ and solve.
4. Notice the asymptotes when drawing the parabolas.
5. Find c using the equation $c^{2}=a^{2}+b^{2}$.
6. Write each of the following hyperbola equations in standard form and find a and b. Then find c.
(A) $25 x^{2}-4 y^{2}=100$
(B) $4(y-3)^{2}-36(x-5)^{2}=36$
(C) $25 y^{2}-4 x^{2}=1$
7. Use completing the square to find the standard equation of the following hyperbola, then find the center of the hyperbola. $4 x^{2}-24 x-9 y^{2}+18 y-9=0$
8. Which of the following is an equation for a hyperbola with foci $(0,5)$ and $(0,-5)$ and asymptotes $y= \pm \frac{3 x}{4}$?
(a) $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
(c) $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
(b) $\frac{y^{2}}{16}-\frac{x^{2}}{9}=1$
(d) $\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$
9. Sketch the graph of the hyperbola $\frac{x^{2}}{64}-\frac{y^{2}}{16}=1$. Label the vertices, foci and asymptotes.

Videos:

1. Example 1: https://mediahub.ku.edu/media/t/1_4rni0x07
2. Example 2: https://mediahub.ku.edu/media/t/1_txzidlil
